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Abstract-General frictional systems, i.e. solid bodies interacting by contact forces, are investigated
and variational formulations are presented. Following recent ideas, general contact boundary
conditions are fonnulated using the notions of subdifferentials and generalized gradients.

1. INTRODUCTION

Questions concerning the interaction of machine elements by frictional forces are frequently
raised in modern design situations. Nevertheless, the application of analytical methods to
such problems has been limited. The reason for this is perhaps that a theoretical model,
describing the general behaviour of frictional systems (i.e. an assembly of solid bodies
interacting by normal and tangential contact forces), has only recently begun taking shape.
This development has consisted of two branches: firstly, applications of ideas and
concepts from the classical theory of plasticity to frictional behaviour[I-4J; and, secondly,
applications and extensions of ideas from the theory of variational inequalities[5-lOJ to
contact problems with friction.

Unilaterality is a property common to all problems connected with frictional systems.
That is, while most treatments of mechanical systems involve introduction oflinear relations
as a first approximation of non-linear phenomena, the physical phenomena of contact and
friction are usually approximated by non-differentiable relations, which do not admit
linearization. Therefore, such problems have to be treated by mathematics that does not
rely on the existence of classical two-side derivatives, but instead admits a one-side, or
unilateral analysis. The notion of the subdifferential[11-13J provides a generalization of
differentiation that admits the use of convex, non-differentiable "superpotentials" when
describing unilateral phenomena[13,14]. It suggests that one should look for "convexi­
fication" instead of linearization when treating non-linear problems. Convexity is usually
naturally present in mechanics and is in some sense implied by a "stable" mechanical
behaviour. However, a number of problems of practical importance do not have this
property. In such cases, the notion of the generalized gradient, developed in Ref. [15J, and
introduced into mechanics by Panagiotopoulos[16J, can replace the subdifferential; i.e.
non-convex superpotentials can be admitted. In this paper we will, by means of convex
and non-convex superpotentials, treat some problems connected with frictional systems.
Therefore, in Section 2 we present some mathematical concepts related to subdifferentials
and generalized gradients which will hopefully make the presentation reasonably self­
contained. Notice also that non-convex superpotentials have recently been used to study
problems of finite elastoplasticity[35,36].

The similarity between frictional and elasto-plastic behaviour is obvious from
experimental investigations[17]. Nevertheless, the level of development reached by the
theory of plasticity is hardly matched by any theory of friction. Almost all investigations
of contact problems in solid mechanics assume either negligible frictional effects, perfect
adhesion of Coulomb's eighteenth century law of dry friction. However, some attempts to
use more general laws of friction have been made. Duvaut[6J, and Oden and Pires[7]
have introduced "non-local and non-linear" friction laws for which theoretical and
numerical investigations have been carried out[8,9]. Their arguments mainly deal with
consistency of the theoretical model and possibility of numerical treatment. Another line

1377



1378 A. KLARlIRING

of research has been inspired by the above-mentioned similarity with elasto-plastic
behaviour[1-3]. These ideas were recently extended to Curnier[4], who proposed a model
of friction similar to that for standard generalized materials[ 18]. In Section 3 of this paper
we follow Curnier and his theory is given a more general mathematical setting; this is
achieved through the use of possibly non-convex superpotentials. Moreover, in the same
way as we describe Curnier's law of friction, here called an elasto-resistance law, we define
static laws of contact. They are usually applicable when force and displacement components
normal to the contact surface are under consideration.

In order to apply the introduced contact boundary conditions in an analysis of an
actual frictional system we have to consider the behaviour of the deformable bodies
involved. We thereby assume them to be linear elastic. Furthermore, in order to stress the
general structure of the theory, we will assume the displacement fields to belong to a finite
dimensional vector space. Such a representation can be obtained by a finite element
approximation of infinite dimensional displacement fields. In Section 4 we obtain relations
between elements of contact boundary spaces, i.e. the subspaces of the displacement and
force spaces where the nonlinearity of the problem occurs. The general contact boundary
conditions are combined with these relations in Section 5. It is seen that the variational
formulations of the considered problems are of inequality type, due to the unilateral
character of contact and friction behaviour. Furthermore, they are hemi-variational
inequalities and not, what is more familiar, variational inequalities; this is due to the
presence of non-convex superpotentials. The hemi-variational inequality is a type of
inequality which has recently been introduced by Panagiotopoulos[16] as a direct
consequence of the definition of the generalized gradient.

Concerning the numerical treatment of problems formulated as hemi-variational
inequalities, it has previously been suggested that one should introduce a smoothing of
the non-differentiable superpotentials, and thereby obtain a variational equality[19]. We
point out that one can in special cases use a different method: if the contact boundary
conditions can be expressed using non-negative multipliers, then the problems can be
formulated as various forms of linear complementarity problems (LCP)-a mathematical
structure known from the area of mathematical programming. Several different solution
algorithms are then applicable. A similar mathematical problem also arises when analysing
elasto-plastic structures, and extensive investigations have been carried out in this case[20­
22]. Several useful analogies between frictional systems and elasto-plastic structures can
therefore be stated[23].

2. SOME CONCEPTS FROM CONVEX AND NON-CONVEX OPTIMIZATION

Consider a pair of normed spaces {X, X'} placed in separating duality by a bilinear
form <y,x>x, where XEX and YEX'. This is a convenient mathematical setting for many
problems of mechanics[24] and such a system has been called a mechanical element (the
French term in Ref. [24] is "element mecanique"). For the needs of this paper one could
consider X and X' as finite dimensional spaces.

Denote by f a function on X (or on X'), with values in R = [- 00, + 00]. We define
a subgradient of f at x, if f(x) is finite, as ye X' such that

f(x') - f(x) ~ <y, x' - x>x Vx' e X. (1)

The set of all subgradients of f at x is the subdifferential of f at x, which we will denote
by af(x). We have

af(x) = {yeX':f(x') - f(x) ~ <y,x' - X>x Vx'eX}.

Relation (1) could due to eqn (2) be equivalently written as

(2)
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Fig. 1. The subdifferential: iJf(x.) = [y~l',y~I)]. iJf(xe) = Ye, iJf(x) = 0 for x. < x < Xb'

yeof(x). (3)

The notion of the subdifferential is in most cases not useful when f is a non-convex
function. As seen in Fig, 1 the subdifferential is then an empty set in cases where ordinary
derivatives obviously exist. To overcome this Clarke[15] introduced a local convexification
of f in terms of the directional derivative fO, This original definition of jO encompasses
functions that are locally Lipschitzian.t It was later extended to lower semi-continuous
(lsc) functions~ by Rockafellar[12]. For the needs of this paper, it is sufficient to be able
to define an extension of the subdifferential in cases when f is directionally Lipschitzian.§
This can be achieved, in an unambiguous manner, by the use of the extended Clarke
derivative fO(x, z) of f at x in the z-direction[12]. If f(x) is finite we have

f O( ) I' f(x' + tz) - f(x')x, z = 1m sup:.....:.._-~......::....:...-:.

"'-,,, t
I!O

(4)

where the notation x' -+ IX means that x' -+ x and f(x') -+ f(x). If f is locally Lipschitzian,
x' -+ x can be written in place of x' -+ IX and Clark's original definition is re-established.

It could be seen that fO(x, z) is convex in the second variable and we define the
generalized gradient of f at x to be the subdifferential of the function jO(x,·) at 0; if f(x)
is infinite the generalized gradient at x is not defined, Furthermore, if f is convex,
the generalized gradient coincides with the subdifferential. Therefore, the former is a
generalization of the latter and we will use the notation of(x) for generalized gradient in
the sequel. From relation (I) it follows that

fO(x,x' - x) ~ (y,x' - x)x'rtx'eX (5)

for ye of(x). A multivalued relation of the form ye of(x) will be called a subdifferential
relation, both in the convex and in the non-convex case.

t f is Lipschitzian on an open set U if there exists a number A~ 0 such that

If(x') - f(x)1 ~ Allx' - xii Vx',xe U.

f is locally Lipschitzian on an open set U if it is Lipschitzian on some neighbourhood of each xe U.
tf is lower semi-continuous on U if

fIx) ~ Ii~J~ff(x')Vxeu.

§f is directionally Lipschitzian at x if there exists a vector z such that

I
, fIx' + fZ') - fIx')
1m sup < 00.
,x'-,'" I,'-,

.10
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Fig. 2. The generalized gradient: iJf(x.l = Y., iJf(xbl = [y~2), y~lI].

It should be noted that if the Gateaux derivative Df(x) of f exists and is continuous,
then of(x) = {Df(x)}. This theory therefore constitutes a proper generalization of concepts
developed for smooth functions in the calculus of variations.

In the following the notion of normal cones will be of interest. We assume that X
equals Rn and consider the distance function dc of the non-empty closed set CeRn

ddx) = min{lx - cl:cEC}.

The normal cone to C at x E C, denoted by Ndx), is defined as the closure of the set

{YERn:tyeoddx)forsomet > O}.

Of special interest is the case when

C = {xERn:<p.{x) ~ O,i = 1, ... ,m}

(6)

(7)

(8)

where <Pi are continuously differentiable real-valued functions. Let B denote the set of
indices such that <Pi ~°is satisfied as an equality. If there exists a ZERft such that

then

(9)

Ndx) =

{YERft:y = ~A.iV<Pi(X)' <P.{x) ~ 0, i=t, ... ,m}. (to)

We further introduce the concept of an indicator function t/Jc of the closed set C c X

It can be shown that

{
OifxeC

t/Jdx) = CX) ifx ¢ C.
(11 )
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(12)

If a function f belongs to the class of convex, Isc and propert functions[II-13], its
conjugated function

j"(y) = sup {(y, x)x - f(x)}
xeX

(13)

may be of interest. It is, in this case, convex, Isc, and proper. Furthermore, (j")C =f. The
conjugated function introduces a method of "inve~sion" of relation (3), since the following
relations are equivalent:

YEof(x)

XEOj"(y)

f(x) + j"(y) = (y,x)x·

The conjugated function of the indicator functions is the support function

j"(y) =sup (Y,x)x.
xeC

(14)

(15)

(16)

(17)

3. CONTACT BOUNDARY CONDITIONS

When solid bodies interact by contact forces, complex physical phenomena occur in
the interface between them[25]. On a continuum mechanical scale these phenomena display
thcmselvcs through rcsistance against normal penctration and tangential relative movement.
Such interaction is described by contact boundary conditions in the form of phenomeno­
logical contact laws, i.e. relations betwccn (relative) displacements and forcest occurring
on the contact surfaces. On the basis of the theory presented in the previous section three
different classes of such laws wi11 be considered in this section.

The first one consists of static laws, which are generally assumed to govern the
behaviour of components normal to the contact surface, when a small displacement
assumption is applied.

The second one consists of laws which can be used to describe a variety of non­
reversible phenomena, such as those of viscosity or plasticity type. A proper name seems
to be elasto-resistance laws. They can be assumed to govern the behaviour of components
tangential to the contact surface. Using a terminology widely used in plasticity the static
laws would be called holonomic and the elasto-resistance laws non-holonomic.

The final class consists of incremental laws. They apply when an incremental
description of the problem is used. In contrast to the two foregoing types of contact
boundary relations, which generally corresponds to different physical events, incremental
laws describes both reversible and non-reversible force-displacement relations. Some static
laws can although be described by elasto-resistance laws[13].

Note that the laws in this section are assumed to hold pointwisely on the contact
surface. They will be extended to global relations between contact boundary spaces in
Section 5. Furthermore, indices Nand T chiefly refer to normal and tangential force and
displacement components, although, for example, static laws need not always relate normal
ones, as it is seen in Example 2.

3.1. Static laws
The notation X p will, throughout this paper, denote a finite dimensional vector space

t f is proper if f(x) > - ex) for all x, and f(x) < ex) for at least one x.
t The term force denotes a force density if contact extends over a hole region.
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Fig. 3. Normal cones to the closed set C.

of dimension p and (, ->x, denotes dual pairing between this space and its dual X~. If a
contact surface displacement WN belongs to X., then (PN , WN)X

r
represents the work done

by the contact force PNEX;. The following subdifferential relation between the contact
force and displacement represents a static contact law

(18)

where I N is a convex or non-convex superpotential. Relation (18) was first given by Moreau
in 1968 for the convex case and by Panagiotopoulos in 1983 for the non-convex case.

In the case where I N is convex, Isc and proper, the conjugated function J~ can be
introduced in order to obtain the inverse relation of (18). The minus sign in relation (18)
is used for consistency with the concept of potential force-displacement relations[13], i.e.
the case when I N is differentiable.

Example 1
Assume that WN, PNER are governed by the following relations:

ifwN - g < OthenPN= 0

ifwN - g ~ othen PN= -QN(WN - g)
(19)

where QN describes the "stiffness" of the contact surface and g measures the contact "gap"
in the undeformed state. This law can be described using a subdifferential relation if we
introduce the convex set CN= { - PN ER: PN ~ O} and denote by 'IIeN the indicator function
of CN' Relations (19) are then equivalent to

(20)

where the equality follows from eqn (12). It further follows from relation (10) that

(21 )

and we obtain the following relation, which will prove to be useful in the sequel:

(22)
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Example 2
A simplified form of Coulomb's law of dry friction can be described using a holonomic

relation[lOJ: the force normal to the contact surface is considered known and the non­
reversible character of friction is ignored.

Assume that WT. PT ER2 are governed by the following relations:

iflPTI < JlIRNI then WT = 0

iflPTI = JlIRNI then WT = - APT' A~ 0
(23)

where Jl is the coefficient of friction and RNis the known normal contact force. Let '¥CT

denote the indicator function of the convex set CT = { - PT ER 2: IPTI ~ JlIRNI}. Relations
(23) are then equivalent to

(24)

which can be shown by using the identification between a'¥CT( - PT) and the normal cone
NCT( -PT ), as shown in Example 1. •

3.2. Elasto-resistance laws
Here we will present a model that is capable of describing a variety of non-reversible

contact boundary relations. It is a development of concepts normally used in the theory
of plasticity and it uses ideas that have recently been introduced by Curnier[4].

As was the case with the displacements WN' when static laws were considered, the
contact displacements WT under consideration will be assumed to belong to a finite
dimensional vector space, i.e. WT EXS' This implies that the time rate of change WT of WT
also belongs to XS' The dual pairing (PT, WT)X, represents the power of the contact force
PTEX~ if the rate of the contact displacement is WT'

Assume that the displacement WTEX. can be decomposed into a reversible part w~
and a non-reversible one ~[4J, so that

WT = w~ + w~. (25)

Following the ideas of Curnier[4J, we extend the notion of standard generalized
materials[18J to contact boundary relations. That is, we assume the existence of a set of
state variables (W~.lX)EXs x XI> where lX are internal parameters. Associated to these
variables is the set (- PT, A) EX: xX; of force variables

A = HlX

(26)

(27)

where QT and H are linear transformations. The rate equation, for the non-reversible
displacement rate ~ and the rate of the internal parameters Ii, is given by a law of
"standard generalized friction"

(28)

The superpotential JT is assumed to depend on PNEX;, which is shown in relation (28).
Subdifferentiation is performed with respect to variables standing in front of ";". Relations
(25)-(28) represent the most general form of an elasto-resistance law.

The role played by PNEX; in these laws is notable; PN-dependent superpotentials are
introduced without PN being an internal force. This makes the elasto-resistance laws
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Fig. 4. Piecewise linear static laws expressed by non-negative multipliers.

correspond to non-associated plastic stress-strain relations and many qualitative features
of elasto-plastic boundary value problems, where such material laws are present, should
therefore be expected to be found also for frictional problems.

In the case where JT is convex, Isc and proper for a prescribed PN , a conjugated
function J'T can be introduced

(29)

When the theory is rate independent, JT becomes the indicator function 'PCT of a closed
set CT(PN) c: X: x X;, depending on PN • That is

(30)

where, as before, the equality follows from eqn (12).

Example 3
Assume that

where cPi: R' x RS X R l
..... R is continuously differentiable on the space RS x Rl for a

prescribed PN • Let us denote by B the set of indices i such that cPi ~ 0 is satisfied as an
equality. Assume that there exists a ze RS x Rl such that

VieB (32)

where, in this case, C ->x denotes inner product on RS x R1 and where V denotes the
gradient with respect to (- PT , A). The normal cone NCT(PN)( - PT , A) can then be represented
as

(33)

i = 1, ... ,q}.

That is
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q •

~ = L J../V¢i (34a)
i= 1

-ci = t J.i~¢i (34b)
i= 1

i = 1, ... ,q. (34c)

Here V and ~ denote the gradient with respect to - PT and A, respectively. All evaluations
of ¢i' V¢j and ~¢j are taken at the point (- PT , A; PN).

We obtain the following law when combining eqns (25) and (26) with relations (34a)
and (34c):

i = l, ... ,q.

(35a)

(35b)

The rates of the constraints are given by

(36)

where V¢i denotes the gradient of ¢i with respect to PN , assuming its existence. Introducing
eqns (27) and (34b) we obtain for the second term in eqn (36)

<~¢i,A>Rt = -<~¢i,H t J./~¢j>RI'
j= 1

(37)

Relations (35)-(37) represent an elasto-resistance law in terms of non-negative multipliers,
and it is similar to Koiter's generalization of elasto-plastic laws to cases with singular yield
surfaces. In Section 6 it will be shown useful for analysis of frictional systems. •

Example 4
We will investigate Coulomb's classical law of friction. The closed set C~PN) is then

given by

(38)

where Jl is the coefficient of friction and PN E R. The number of internal variables is thus
zero in this case. Since JT is the indicator function of C~PN)' J"-r is given by the support
function

(39)

It is usually assumed that QT tends towards infinity and thus, ~ equals zero; i.e.
WT = ~. The support function (39) is then referred to as the virtual work of the friction
forces[6-9].

An extension of Coulomb's law to include internal parameters has been given by
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Fig. S. Piecewise linearization of the closed set, eqn (38), i.e. a piecewise linear Coulomb's friction
law.

Curnier[4]. The first one to describe Coulomb friction by a subdifferential relation was
Moreau in 1970. •

3.3. /ncremental laws
If we consider, at a specific contact force state, the "response" WE X q due to a force

rate PEX;, we will obtain what is usually called an incremental relation. Such relations
will generally depend on the previous load history. However, if we consider the situation
at a particular time instance, superpotentials IN and JT depending on the force rates PN

and PT only, can be used to obtain incremental subdifferential contact laws. Hence, the
following relations represent incremental laws:

wN EoJN( - PN)

WTEoJ-r< - PT;PN).

(40)

(41)

If IN[JT] is convex,lsc and proper, then we could, by the introduction of the conjugated
function h [J~], obtain the inverse of relation of (40) [(41)].

Example 5
Let us investigate Coulomb friction when described by an incremental law. Assume

that the load history is such that rP = !PTI - 1tIPNI = 0 in the present load state. The
superpotential JT will then be the indicator function 'I'CT(I'N'( - PT) of the convex set

(42)

The normal cone of this set is given by

which introduces an incremental description of Coulomb's friction law in terms of a non­
negative multiplier i. •

4. FINITE DIMENSIONAL RELATIONS OF LINEAR ELASTICITY

The finite element method permits the traditional continuous tensor fields of mechanics
to be replaced by finite dimensional vectors. This representation of the mechanical system
generally reflects all properties and features of the physical problem equally well as an
infinite dimensional representation. The finite dimensional description is less detailed, but
not less general, than the infinite dimensional one. It furthermore makes applicable the
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mathematical tools of linear algebra. These tools are more manageable than those of
functional analysis, required in an infinite dimensional description.

The finite element matrix equations, that describe elasto-plastic continuum problems,
have been extensively used for analysis and computation[20-22]. Unilateral boundary
value problems have also been treated in this way[14]. In the present work, a slightly
more general approach is used; the theory of finite dimensional vector spaces, as described
by Besseling[26, 27], is utilized. The advantages of this are that it emphasizes the structure
of the theory and that it suggests an abstract formulation of the problem.

Note that for a contact problem of linear elasticity, all non-linearity occurs on the
contact boundary. Therefore, it is useful to formulate the problem in terms of elements of
contact boundary spaces only. Such a formulation is made possible by equations obtained
in this section. These equations relate contact forces, contact surface displacements and
the prescribed forces and displacements.

Consider a structure divided into finite elements. A displacement state u of the
structure can then be thought of an an element of a finite dimensional vector space QjJ.
The forces acting on the structure, could by means of the interpolation functions, be
represented by their virtual work as functionals !£(QjJ,R) on '¥t. These functionals constitute
the dual space of '¥t, which we will denote by F. Forces such that the structure is in
equilibrium constitute a subspace of fF, which is isomorphic to the space of stress states
~. There exists a one-to-one linear transformation

It can further be shown that the transpose of DT constitutes a transformation

D:QjJ -+ G

(44)

(45)

where G is the space of strains which is isomorphic to a subspace of QjJ. We also assume
the existence of a bijective transformation

(46)

that determines the constitutive behaviour of the structure. Thus, if uE iJIi,fE F, 0' E ~ and
eE G we have the following set of canonical equations:

e = Du

0' = Ee.

(47)

(48)

(49)

These equations express equilibrium, compatibility and constitutive behaviour of a linear
elastic solid.

In order to introduce "boundary conditions" we assume the displacement space iJIi to
be decomposed into the two disjoint subspaces '¥to and a direct complement '¥tC

• The dual
spaces of these spaces constitute a decomposition of F and the~ are denoted by fFo and
FC. Equations (47) and (48) can then be written

DcTO' =fe

(50)

(51)

(52)
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where UO EOlIo, UC E0lIC, JO E~o and r E~<; the transformations DO and DC are restrictions
of D to 0;,0 and 0lIC, respectively.

Here OlIo will be regarded as a space of prescribed displacements. That is, if UO E'11°,
then UO = u(t), where u(t) is a known function of time t. Equations (49) and (50)-(52) result
in

DcT
(f = DcTEe = DcTEDCuC+ DcTEDOu(t) =r. (53)

Now introduce, as a subspace of 'PIc, the space "III of contact boundary displacements.
There exists a projection operator C,: 'PIc -+ "III; Le.

(54)

where WE "III. It is known that the range space 9f(Cd = "III and the null space %(Cd = I1/i 2

form a direct sum ofO//c. Furthermore, the prescribed forcesJ(t) are regarded as a functional
on O//c; thus,J(t)E~c. The dual spaces of "III and O//z are f? and F 2 • The contact forces P
belong to f!J and the restrictions of!(t) to f!J and F z is denoted by J,,(t) and];(t), respectively.

Denote by D, and Dz the restrictions of DC to "III and 0//2' and introduce the
notations K ll = DIED" K 1Z = DIED2 , Kn = DIEDz, Ji(t) = -DIEDOu(t) and
n(t) = - DIEDOu(t). From eqn (53) we then obtain

(55)

(56)

If D2 is one-to-one, then the inverse Kil exists, and U2 can be eliminated from eqns (55)

and (56). Thus

This equation states a relation between P Ef!J, WE "III and the prescribed forces and
displacements.

The operator (K'l - K,2KilKI2) in eqn (57) may be non-singular and therefore
invertible. This possibility, which makes an inverse relation of eqn (57) obtainable, will be
investigated in a slightly different setting from what has been used up to now. That is, the
space IJIi 2 is assumed to be a subspace of O//e, in contrast to above, not necessarily a direct
complement of "III. Then a projection operator C2: O//e -+ IJIi 2 exists; i.e.

(58)

Letting the prescribed forceJ(t) belong to F 2 , by using a work equivalence a functional
r E!Fe on IJIiC can be constructed

(59)

where (, ->x represents dual pairing between a space X and its dual space. By using eqns
(54) and (58) we obtain from eqn (59)

r = CIP + CIJ(t). (60)

Assuming that DC is one-to-one, the inverse of DcTEDCexists and we obtain from eqns
(53) and (60)
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uC = K;.I CTp + K;.I CIJ(t) + K;.l f~(t)
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(61)

where the notations Kcc = D cTEDc and f~(t) = - DcTEDOii(t) have been used. Premultiply­
ing eqn (61) with C1 and using eqn (54) we get

(62)

This is the inverse relation of (57) and it is obtainable when DC is one-to-one, i.e. when
the structure is not a mechanism in its non-contacting state. Also, note that C1 is surjective
and, therefore, the inverse of C1K;. 1 cT exists.

Finally, it should be pointed out that a relation, having the same form as eqn (57),
can be obtained under the mild restriction that there exists a state of equilibrium for the
structure; this is shown by using a force method.

5. VARIATIONAL FORMULATIONS

In this section we will combine the contact boundary conditions of Section 3 with the
relations obtained in Section 4, in order to obtain some different variational formulations
of contact problems.

Relations (62) and (57) can be written as

w = fJP - V

P = KW - R

(63)

(64)

where K({J) is a "stiffness" ("flexibility") transformation and V and R are "force" vectors.
Depending on the contact boundary conditions under consideration P and w will be
indexed by both Nand T in the sequel.

The contact boundary conditions on Section 3 were assumed to hold pointwisely on
the contact surface. Therefore, in order to combine them with eqn (63) or eqn (64) they
should be extended to relations on the contact boundary spaces "IY and f!J. Due to the
finite dimensional setting used in this paper, the contact boundary conditions can be
extended by means of finite sums. It is not immediately clear that this can be done
unambiguously; the mathematical question marks are, however, removed by Andersson[28].

5.1. Static laws
When considering boundary conditions in the form of static laws the space of contact

1
boundary displacements "IY is composed of v disjoint subspaces X.. i = 1, ... , v; i.e. the
elements of "IY and its dual space are defined by adding the elements of the subspaces, so

.; \f • i i v i

that, if wNeX.. then WN = L wNe "IY, and if PeX;, then P = L Pef!J.
i= 1 i= 1

1

Convex or non-convex superpotentials I N , as described in Section 3.1 are defined on
i 1

X;. If these local superpotentials I N are assumed to be proper we can, by addition,
construct a global superpotential I N, defined on f!J; i.e.

Y i i

JJ-PN) = L JJ -PN)·
1= 1

The set of statically admissible contact force states is introduced

1

According to Andersson[28], if PN E XN and I N are Isc and proper, then

(65)
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(66)

. i i

WN E oJN( - PN), i = I, ... ,v.

From relation (5) it follows that, for PN EXN, relation (66) is equivalent to

(67)

Indexing P and w, in eqn (63), by N, and inserting into relation (67) we obtain

where the bilinear form A(PN, PN) = (f3PN, PN)fJ> has been introduced.
We can now formulate the following problem:

(1) Find PN E XN such that relation (68) is satisfied.

(68)

This problem constitutes a variational formulation of the problem of contact between
linear elastic bodies, when contact boundary conditions are represented by static laws.
Relations such as (68) have been called hemi-variational inequalities[16].

Note that the requirement PNE~ in relation (68) could be substituted for PNE XN
since directions - PN+ PN that are unique to the first case correspond to
J~( -PN , -PN+ PN) = 00.

If I N is a convex superpotential, I N( - PN) - I N( - PN) replaces J~( - PN , - P;" + PN)

and relation (67) becomes a variational inequality. When I N represents a perfect unilateral
constraint, i.e. the static law of Example 1 in Section 3 with QN --+ 00, the resulting
variational inequality is a finite dimensional case of what has been called the reciprocal
formulation of the Signorini problem[29].

Furthermore, if I N is convex, Isc and proper, there exists a conjugated function J'{. of
I N with the property that

(69)

Introduce the set of kinematically admissible contact surface displacements

The dual problem of problem (I) can now be formulated by means of relation (69). Using
relation (5), in the same way as above, we obtain from eqn (64) and relation (69)

(70)

where A(WN, W;..) = (KWN, w;")"*'
The dual problem of problem (I) is:

(2) Find WN E <?9'N such that relation (70) is satisfied.

If, regardless of the existence of I N , there exists a superpotential IN such that
- PN E aIN(wN), then it is possible to obtain an inequality formally identical to relation (70)
but with J'{. replaced by IN' Finally, note also that problems (I) and (2) can be shown to
follow from so-called substationarity principles[16]. These principles are dual minimization
problems in the convex case.
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5.2. Etasto-resistance taws
Let us now turn to boundary conditions in the form of elasto-resistance laws. Let

the space of contact boundary displacements "If" be divided into the disjoint subspaces
"If"N and "If"T of normal and tangential contact displacements, respectively. Assume that

I
"If"N is composed of disjoint spaces X" i = 1, ... , Jl and similarly, "If"T of disjoint

. . i ~ . . j

spaces X., i = 1, ... ,Jl; thus, if WNEX" then WN = L WNE"If"N, and if WTEX., then
1= J

p. •

WT = L wT E "If"T' The dual space f:1J of contact forces is decomposed in a similar way as
1=1

"If". Further, introduce the space of internal parameters d. It is assumed to consist of Jl

disjoint spaces k, i = 1, ... , Jl, such that if ~ E k, then IX = t &E d. The dual space d'
i= 1

of d is the space of internal forces and it is decomposed similarly to .JII.
I

Now assume superpotentials JT, as described in Section 3.2, to be defined on the
I I I

subspaces X; x X; x X; of PI x .JII'. From these local superpotentials we obtain a global
one by addition

IJ I I I I

J-r<.-PT,A;PN) = L J-r<.-PT,A;PN)
1= 1

(71)

where PT E f:1JT, PN E f:1JN and A E .JIl'. Introduce the set of statically admissible contact and
internal force states

To deduce a global description of the elasto-resistance law, we define reversible and
IJ •

non-reversible contact boundary displacements, ~, ~E "If"T, as ~ = L #, and as
1= 1

p. .

~ = L w~, so that
i= 1

(72)

1
Similarly to the case of static laws, according to Ref. [8J we have: if (P, A)E XT and J T are

i i P. i

Isc and proper on X; x Xl for a prescribed PN= LPN' then
i= 1

(73)

IS equivalent to similar local subdifferential relations, defined for each subspace
iii

X;xX:xX;.
Global forms of eqns (26) and (27) are also needed. Thus, from the local contact

I
stiffness transformations QT we obtain a global one, QT, as

(74)

Similarly, a global form of eqn (27) is defined by
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Jl. i #J i.

A = L A = L Ha. = HIX.
i~ I i~ I

(75)

Relations (72)-(75) describe a global elasto-resistance law. To combine this law with
eqn (63) we note that relation (73) is, according to relation (5), equivalent to

J¥« - PT, A), (- Pr , A') - (- PT, A); PN)

~ <~, -Pr+ PT )I¥T + <-a,A' - A)•. (76)

Furthermore, eqn (63) can be time differentiated and written in a weak form

=<pP,P' - P)~ - <V,P' - P)I¥

Combining relations (72) through (77) we obtain

VP'e9. (77)

J¥«-PT,A),(-Pr,A') - (-PT,A);PN ) + B(P,P' - P) + C(A,A' - A)

~ <WN,PN- PN)I¥N + <V,P' - P)I¥ V(P',A')e9 x d ' (78)

where we have used the following definitions of bilinear forms

B(P, Pi) = <PP + Qi I PT , P')I¥ VP, pi e 9

C(A, A') = <H - I A, A').. \>' A, A' e d '.

Inequality (78) reveals the fact that eqn (63) and the elasto-resistance law do not
immediately make up a proper problem formulation: the rate of normal displacement WN
must be eliminated from inequality (78). To that end, in some physical problems it is
plausible to assume that WN is prescribed for each time t e [0, T] under consideration; in
other cases a linear or non-linear mapping from 9 to "II'N can be assumed such that WN
can be eliminated from inequality (78). Assuming one or the other of these two possibilities
we have that, if V: [0, 1] -+ "II' is a known mapping and if proper initial conditions are
prescribed for Pe9 and A ed' at t = 0, then the following problem can be formulated:

(3) Find (P, A): [0,1] -+ XT such that inequality (78) is satisfied for each time t e [0,1].

This is a variational formulation of the problem of contact between linear elastic bodies,
when contact boundary conditions in the form of elasto-resistance laws are valid.

Inequality (78) resembles a quasi-variational inequality, since PN is present in J¥.
However, since JT can be a non-convex superpotential, a proper name for inequality (78)
seems to be a quasi-hemi-variational inequality.

No problem exists which could be regarded as dual to problem (3), at least not in the
usual sense. However, under certain additional assumptions. now to be given, a formulation
of the present problem in terms of contact boundary displacements can be presented. If
JT is convex, when restricted to 9 T x d'. a conjugated function J':r exists with the property
that

(79)

Furthermore, require that ~ = WT, i.e. QT -+ 00, and that there exists a linear or non­
linear transformation Z: "II' -+ 9 N . A superpotential JTcan then be defined as
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JT(WT, -Ii; w) = J1'(WT, -Ii; Zw). (80)

Obviously relation (79) holds with J~ replaced by JT.
Inlroduce lhe sel of kincmalically admissible conlacl displacemenl and inlernal

parameter rates

'?YT(w) = {(w,Ii)E1f" x d:JT(wT, -li;w) < oo}.

Moreover, the following weak form of eqn (64) is useful:

vw' E1f".

(81)

When eqn (80) is valid it follows from relation (5) that relation (79) is equivalent to

(82)

Combining relations (81) and (82) we obtain

JTO((WT , -Ii), (W-f, -a') - (WT, -Ii); w) + B(w, w' - w) + C(a, a' - li)

where the following bilinear forms have been introduced:

V(w',a')E1f" x d (83)

B(w, w') = <KW, w')1f"

C(a,a') = <Ha,a')..,

vw, W' E1f"

Va,a' Ed.

Similarly to the case of problem (3), PN has to be eliminated from relation (83) in
order for this inequality to make sense as a formulation of our problem. However, in this
case, the transformation Z, which is already assumed to exist, can be used to eliminate PN

from relation (83). Therefore, assuming the transformation R: [0, T] ~ ~ to be known
together with proper initial conditions for WE 1f" and a Ed, the following problem can be
formulated.

(4) Find (w, a): [0, T] ~ 1f" x d such that, for each time t E[0, T]

(i) (w,Ii)E'?Y~w)

(ii) relation (83) is satisfied.

Convex or non-convex superpotentials such as JT can of course exist independently
of the existence of JT , Le. relation (80) does not need to hold. In that case, relation (83)
can be made to make sense as a formulation of the problem by. assuming PN: [0, T] ~ ~
to be a known mapping.

Oden and Martins[25] have recently formulated a dynamic analogy of problem (4).

5.3. Incremental laws
This section will be concluded by a treatment of incremental laws. Consider the same

decomposition of 1f" as above and introduce global superpotentials IN(PN) and J~PT;PN)
in the following way:
SA5 '2~/12-B
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IJ i i

I N( -PN) = L I N( -PN)
i= 1

IJ iii

JT( - PT; PN) = L JT( - PT; PN)
;=1

(84)

(85)

1 i i

where IN and JT are local superpotentials, as described in Section 3.3, defined on X r and
i i

X, X X., respectively.
The set

i

of statically admissible contact force rate states is introduced. If Pe Xand I N are lsc and
i . IJ i

proper, and JT are lse and proper on Xs for a prescribed PN = LPN, then
i=!

(86)

and

(87)

i
are equivalent to similar local subdifferential relations, defined on the subspaces X; and
i i
X; x X;.

Note that the weak form of eqn (63), described by (77), is still valid when, instead of
the variations P' - P, the variations P' - P are taken. Combining such a relation with
relations (86) and (87) and taking relation (5) into account we obtain

~(-PN' -PN+ PN) + .I¥(-PT, -PT + PT;PN) + B(P,P' - P)

~ <V,P' - P)fJ' 'r:/ P' ef/J (88)

where B(P, P') = <PP, P')fJ"
Relation (88) is a quasi-hemi-variational inequality and the following problem can be

formulated:

(5) Find Pe Xsuch that relation (88) is satisfied.

As was the case when elasto~resistance laws were studied, no problem exists which
could be regarded as dual to problem (5). To achieve a formulation in terms of displacement
variables, one should look for an incremental superpotential JrtWT; WN), such that
- PTEaJrtwT; WN)'

6. SOLUTION METHODS AND LCP FORMULATIONS

Due to the novelty of the concept of hemi-variational inequalities, only heuristic
approaches to their numerical solution are available. In Ref. [19] it is suggested that one
should introduce a "smoothing" of the non-differentiable superpotentials. This transforms
the hemi-variational inequality into a variational equality and a non-linear algebraic
equation solver can be used for solution. In cases of the evolutionary problems (3) and (4),
this idea has to be combined with a time discretization, and an iterative procedure to
determine the implicit variable PN; i.e. the ideas used to solve contact problems with convex
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superpotentials in Ref. [9J could be generalized.
In this paper, the above method will not be outlined; instead alternative formulations

of the present problems will be introduced, which lends themselves naturally to numerical
treatment. These formulations are recognizable as what is known in mathematical
programming theory as linear complementarity problems (LCP), and they are possible to
obtain if the subdifferential relations are piecewise linear in such a way that they can be
expressed using non-negative multipliers. This was the case in Examples 1, 3 and 5 of
Section 3, and further examples are shown in Fig. 4. Coulomb's friction law can be
described by non-negative multipliers if the surface {PN E R, PT E R2

, 4J = IPTI - JlIPNI = 0,
PN < O} is approximated according to Fig. 5. The LCP obtained using this approximation
is investigated in Ref. [23].

The LCP concept has been widely used to model plastic material laws and to
investigate the load response of elasto-plastic structures; indeed, a rather extensive analogy
exists between these problems and the present ones[23J. In this paper we will consider
two examples of LCP formulations, related to frictional systems.

Example 1
Assume that the spaces ~ and ir both equal the Euclidean space R·. That is, the

contact boundary consists of v discrete nodal points. Relations such as (22) are assumed
to be valid at each contact nodal point. To describe this for the entire boundary

1 •

simultaneously, we introduce a quadratic v by v matrix QN = diag [QN,"" QNJ and vectors
WN, PN , g and A. belonging to R·. We then have

(89)

A. ~ 0, (90)

Relation (63) is, in this case, represented by a v by v matrix pand vectors WN, PN and V.
Combining eqn (63) and relations (89) we obtain

(91)

Relations (90) together with eqn (91) are a LCP and, therefore, several direct and iterative
methods have been suggested for its solution[30]. If p+ QN 1 is symmetric and positive
definite, relations (90) and (91) represent the Kuhn-Tucker conditions of a quadratic
programming problem and any method applicable to such problems can therefore be used
to solve the present one. •

Example 2
Consider the elasto-resistance law in Example 3 of Section 3. Assume that 4J1 are affine

functions on the space Rr x R" X RI
• This means that V4Jj, 'V4Ji and ~4Ji are independent

of - PT , A and PN • We also assume that spaces ~N and ~T are the Euclidean spaces Rr,.
and R",., respectively. The contact boundary consists of Jl nodal points and relations such
as eqns (35)-(37) are prescribed for each one. To describe this, we introduce the gradient
matrices

G1 = diag{[\i4JL , V4J~J, [V4JL· .. ,J, , [V4J~, J}

G2 = diag{[V4JL , ~4J~J, [~4JL .. ·,J, , ['V4J~, J}

G3 = diag{[V4J~, , V4J~J, [V4Ji, ... ,J, , [V4J~, J}.

A hardening matrix is also needed
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j p.

H = diag[H, ... ,H].

The gradient matrices and the hardening matrix now build two (r + s)1l by qll matrices

and an qll by qll matrix

IfP = [Pi, p~]T eR(r+s)p. and tb, Ae RqP., relations (36) and (37) can be extended to a relation
on the entire contact boundary

(92)

Furthermore, a flexibility transformation is introduced as an (r + s)1l by (r + s)1l matrix

I P.
S = diag[Q-r I, ... ,Q-r 1,0, ... ,0]

such that, if w= [wi, W~]T e R(r+s)p. and if WN is assumed to equal zero, then eqn (35a) can
be described for the entire boundary as

. o.
W= -SP + Nl

Since 4Jj were assumed to be affine functions eqn (92) can be integrated to yield

4J = NTP - HA. + K

(93)

(94)

where K e RqP. represents the initial (i.e. ), = 0) distance from origo to the plane 4J = 0, in
contact force space R(r+s)p.. Relations (35) can now be written for Il contact nodes

(95)

Combining a matrix form of eqn (63) with eqn (93), when integrated, yields, if the inverse
of (/3 + S) exists

(96)

which, when substituted into eqn (94), results in

(97)

Assuming the map V: [0, T] -+ R(r + s)p. to .be known together with proper initial conditions
we now have the following problem:

Find (4J, A): [0, T] -+ flqp. x RqP. such that eqns (97) and (95) are satisfied for each time
te [0, T].

This is a "linear complementarity problem involving derivatives". A similar problem to
this arises in connection with the analysis of elasto-plastic structures, and with this
application in mind, a solution algorithm has been suggested by Kaneko[31]. This
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algorithm is applied to the present frictional problem in Ref. [32]. •
It is known that contact problems with Coulomb friction need not have unique

solutions[23, 33]. This fact can in our more general setting be explained to be due to the
presence of PN in the superpotential JT . Also, in the case of static laws, non-uniqueness of
solutions can occur if the superpotentials are non-convex. In the finite dimensional case,
it has been shown that the theory of LCP provides a tool for investigation of these
questions[23]. An example of this is provided by the following classical theorem[34],
which is directly applicable to the LCP formulation in Example 1 of this section.

Theorem
The system ro = M' + q ~ 0, ,~o, roT' = 0, where M is an n by n matrix and ro, q

and' are n-vectors, has a unique solution (ro, ,) for each q if and only if M is a P-matrix.t

7. CONCLUSIONS

This paper deals with the analysis of frictional systems, where the constitutive contact
behaviour is allowed to be of a very general kind. The formulation of these contact
boundary conditions is accomplished through the use of some recent concepts from convex
and non-convex optimization. It is clear that these concepts-the subdifferential, the
generalized gradient, and convex and non-convex superpotentials-are full of possibilities
for a number of areas of mechanics; those based on convexity are already well established
as tools of mechanical analysis[13, 14].

In order to obtain variational formulations of problems connected with frictional
systems, we investigate finite dimensional relations of linear elasticity. It is pointed out
that this representation is less detailed, but not less general, than the infinite dimensional
one. The variational formulations obtained are of a type known as hemi-variational
inequalities, which specialize to variational inequalities when the involved superpotentials
are convex.

In contrast to a number of previous investigations[7, 10] we formulate the problems
on the contact boundary spaces, i.e. the subspaces of the displacement and force spaces
where the actual non-linearity of the problem occurs; the idea is similar to that used in
Ref. [29]. This proceeding has the advantage of giving the problem a smaller dimension,
and also of making the analogy with previous treatments of elasto-plastic problems clear.
This analogy opens up a novel way of attacking contact problems: both numerically and
theoretically. More specifically, it can be shown that several problems connected with
frictional systems have the mathematical structure of a linear complementarity problem
(LCP). LCPs arc well known in the area of mathematical programming and results related
to them have been extensively used to model, investigate and calculate elasto-plastic
structural problems.
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